Academic Course Description

BHARATH UNIVERSITY
Faculty of Engineering and Technology
Department of Mechanical Engineering
BGE010 RAPID PROTOTYPING
Eighth Semester, 2015-16 (Even Semester)

Course (catalog) description

To provide knowledge on different types of Rapid Prototyping systems and its applications in various fields.

Compulsory/Elective cou	rse :	Non Major Elective
Credit & contact hours	:	3 & 45
Course Coordinator	:	Mr.Durai Raj
Instructors	: Dr. A	A. Buckshumiyan.

Name of the instructor	Class handling	Office location	Office phone	Email (domain: @ bharathuniv.ac.in	Consultation
Dr. A.	Final Year	JR002		Backshumiyana.mech@	9.00 to 9.50
Buckshumiyan.	Mech			bharathuniv.ac.in	am

Relationship to other courses:

Pre –requisites : Manufacturing Technology

Assumed knowledge : By understanding the concept of basic mechanics and manufacturing technology.

Following courses : Nil

Syllabus Contents

Unit I Introduction

Basic operation - impact of rapid proto typing and tooling on product development - benefits-applications.

Unit II Rapid Prototyping Processes

Introduction –classification-laminated object manufacturing-fused deposition modeling -stereolithography solid ground curing –selective laser sintering - 3d printing

10

10

Unit III Cad Processes

Introduction –data requirements-solid modeling –surface modeling .geometric processing –interface formatsmodel preparation-slicing, support structures and machine instructions

Unit IV Materials for Rapid Prototyping

Plastics- resins -metals-ceramics selection of materials for suitable processes - advantages-limitations

Unit V Rapid Tooling Processes

Introduction - Classification in Direct rapid tooling - Silicon rubber moulding - Epoxy moulding - Electro forming - Vacuum casting - Vacuum forming - Rapid tools for injection moulding – Direct rapid cooling processes – SLS rapid tool - Shape deposition manufacturing - Laser deposition lamination - Rapid tooling roots

Total: 45 Hours

Text Book(s) and /or required materials

TEXTBOOKS:

1. Ibrahim Zeid, CAD/CAM theory and practice, Tata Mc Graw hill, 2005

REFERENCES:

- 1. Paul F. Jacobs, Rapid Prototyping and Manufacture. Fundamentals of Stereolithography,1995
- 2. Rapid Prototyping reports, CAD/CAM publishing,1991
- 3. Rapid News, University of Warwick. UK 1995
- 4. Rapid tools for Injection Moulding (www.vmreg.com/raptia/reports/CRIF.pdf)Applications of RP techniques for sheet metal forming (www.raptia.org) Medical RP applications (http://home.att.net/-rppat /museum/mus-5.htm)

Page 2 of 6

Computer usage:	Yes.	
Professional component		
General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	100%
Professional subject	-	0%

Broad area: Manufacturing

10

1	0

5

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
	University	TRA		
4	Examination	IBA	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

		Correlat	es to
	1	program	outcome
	Н	Μ	L
 Generating a good understanding of RP history, its development and applications. Expose the students to different types of Rapid prototyping processes, materials used in RP systems and reverse engineering 	a		
 Students will be exposed to different types of Rapid prototyping processes, materials used in RP systems and reverse engineering. 	a,c,i,l	d	
3. Students will understand steriolithography methods	c,l	f	
4. Students learn processes of CAD	a,c	h	k,l
5. Students gain knowledge to develop prototypes	a		1
6. Students learn the concepts of rapid tool processing			

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	Topics	Problem solving (Yes/No)	Text / Chapter			
UNIT I Int	UNIT I Introduction					
1.	Introduction of Rapid Prototyping	No				
2.	Basic operation	No	-			
3.	Impact of RP	No				
4.	Rapid Tooling	No				
5.	Product Development	No	[T1] chanter -1 2			
6.	Methods of Developments	No	[R1]			
7.	Classification of rapid processes	No				
8.	Various materials	No	_			
9.	Benefits of RP	No				
10	Application	No	_			
		NO				
UNIT II Rap	Id Prototyping Processes	No				
11.	Classification	NO	-			
12.		No	_			
13.	Laminated object manufacturing	No				
14.	Advantages and disadvantages	No				
15.	Fused deposition modeling	No	[T1] chapter - 3,			
16.	Stereolithography	No	[R1, R3]			
17.	Advantages and disadvantages of stereolithography	No				
18.	Solid ground curing	No				
19.	Selective laser sintering	No				
20.	3D Printing	No				
UNIT III CAI) Processes					
21.	Introduction of CAD Processes	No				
22.	Data Requirements	No				
23.	Solid modeling	No				
24.	Surface modeling	No				
25.	Geometric processing	No	[T1] chapter - 5,			
26.	Interface formats	No	[R2]			
27.	Model preparation	No				
28.	Slicing structures	No				
29.	Machine Instructions	No				
30.	Preparation of CAD	No				
UNIT IV Mate	UNIT IV Material for Rapid Prototyping					
31.	Types of Materials	No				
32.	Plastic Materials	No	[T1] chantor (
33.	Resin	No	[R2,R3]			
34.	Ceramics materials	No				
35.	Advantages and limitations	No				
UNIT V Rapid Tooling Processes						
36.	Rapid Tooling Processes Page 4 of 6	No	[T1] chapter – 7,8,			
37.	Classification in direct rapid tooling	No	[R4]			

38.	Silicon rubber moulding	No	
39.	Epoxy moulding	No	
40.	Electro forming	No	
41.	Vacuum forming	No	
42.	Rapid tools for injection Moulding	No	
43.	Direct rapid cooling processes	No	
44.	SLS Rapid tool, Shape deposition manufacturing	No	
45.	Laser deposition lamination, Rapid tooling roots.	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /		
Seminar / Online		
Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by Dr. A. Buckshumiyan

Addendum

ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic,

environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Page 5 of 6

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic,

environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

- j) The ability to communicate effectively with the engineering community and with society at large.
- k) The ability in understanding of the engineering and management principles and apply them in project and finance management

as a leader and a member in a team.

1) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduates are enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

BGE010 RAPID PROTOTYPING

Course Teacher	Signature
Dr. A. Buckshumiyan	

Course Coordinator Mr.Durai Raj

HOD/MECH